
International Journal of Heat and Mass Transfer 47 (2004) 3215–3231

www.elsevier.com/locate/ijhmt
Centrifugal buoyancy effect on turbulent heat transfer
in a rotating two-pass smooth square channel

with sharp 180-deg turns

Akira Murata *, Sadanari Mochizuki

Department of Mechanical Systems Engineering, College of Engineering, Tokyo University of Agriculture and Technology,

2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan

Received 20 November 2003; received in revised form 6 February 2004

Available online 9 April 2004

Abstract

Centrifugal buoyancy effect on heat transfer in a rotating two-pass square channel with 180-deg sharp turns was

numerically investigated by using the large eddy simulation. The effect of the aiding/opposing buoyancy contributions

was seen in different longitudinal vortex structure near the pressure surface depending on the radial flow direction and

in larger buoyancy-induced variation of the heat transfer on the pressure surface than that on the suction surface. As

the buoyancy increased, the friction factor dominated by the pressure loss of the sharp turn decreased a little, and the

Colburn’s j factor stayed almost constant. As a result, the heat transfer efficiency index slightly increased by the

buoyancy.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The effective cooling of a gas turbine rotor blade is

essential because higher efficiency of the turbine requires

higher inlet gas temperature. Generally, this blade

cooling is performed by film cooling at the external

surface of the turbine blade and also by internal forced-

convection cooling which uses winding flow passages

inside the turbine blade. In the internal forced-convec-

tion cooling, the real phenomena are very complicated

due to external forces: the Coriolis force and the buoy-

ancy force in the centrifugal acceleration field. In addi-

tion to these external forces, the disturbances induced by

turbulence promoters (ribs) and 180-deg sharp turns

further complicate the phenomena [1].

As for the heat transfer in smooth and/or rib-

roughened channels with the 180-deg sharp turn, several

researchers investigated the detailed spatial variation of
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the local heat transfer in the stationary condition with

various techniques: wall temperature measurement by

using hundreds of thermocouples [2,3], naphthalene

sublimation technique to measure the local mass trans-

fer, which was transformed into heat transfer by using

the analogy between heat and mass transfer [4,5], un-

steady wall temperature measurement by using temper-

ature-sensitive liquid crystal [6,7], and wall temperature

measurement by using infrared thermography [8]. In

these studies, the heat transfer variation induced by the

180-deg sharp turn was captured: the high heat transfer

areas were observed in and after the sharp turn. As for

the flow field in the stationary condition, Son et al. [9]

applied the particle image velocimetry technique to the

two-pass channel with the 180-deg sharp turn, and the

detailed two-dimensional flow field was measured. For

the rotating condition, however, both flow velocity and

wall temperature measurements become very difficult

because of the following two reasons: high centrifugal

force preventing data acquisition system from normal

operation in the rotating system and the difficulty in

transferring data from the rotating system to the sta-

tionary system. Nevertheless, some researchers have
ed.
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Nomenclature

Atotal;nodim dimensionless total heat transfer area of

channel

cp specific heat, J/(kg K)

CS Smagorinsky constant

Ch coefficient of linear component in energy

equation (¼Atotal;nodim=32)

D hydraulic diameter (¼ side length of straight

pass cross-section), m

f friction factor (¼DptotalD=ð2qU 2
mLÞ)

Fi external force term

Gr� Grashof number based on friction temper-

ature (¼ bTrx2Rm;dim‘
3=m2)

Grm;q Grashof number based on wall heat flux

(¼ b _qx2Rm;dimD4=ðm2kÞ)
Grm;DT Grashof number based on temperature dif-

ference (¼ bDTx2Rm;dimD3=m2)

h heat transfer coefficient, W/(m2 K)

H0 dimensionless distance between rotation axis

and x-axis (¼H0;dim=‘)
H0;dim distance between rotation axis and x-axis

(z ¼ 0), m

j Colburn’s j factor (¼Num=ðRemPr1=3Þ)
k dimensionless turbulent kinetic energy

Kstraight pressure loss coefficient of straight pass

(¼Dpstraight=ð1
2
qU 2

mÞ)
Kturn pressure loss coefficient of sharp turn

(¼Dpturn=ð1
2
qU 2

mÞ)
‘ length scale (¼ 0:5D), m

L total duct-axial length of two-pass channel

(¼ 22D), m

Nu Nusselt number (¼ hD=k)

Dpstraight pressure loss at straight pass, Pa

Dptotal pressure loss between channel inlet and

outlet, Pa

Dpturn pressure loss between turn inlet and outlet,

Pa

Pr Prandtl number (¼ 0.71)

PrSGS Prandtl number of subgrid-scale model

(¼ 0.5)

_q wall heat flux, W/m2

Q second invariant of deformation tensor

Rm dimensionless mean rotation radius

(¼Rm;dim=‘)
Rm;dim mean rotation radius, m

Ra� Rayleigh number (¼Gr�Pr)
Rem Reynolds number based on bulk mean

velocity (¼UmD=m)

Re� Reynolds number based on friction velocity

(¼ u�‘=m)

Rom rotation number based on bulk mean

velocity (¼xD=Um)

Ro� rotation number based on friction velocity

(¼x‘=u�)
Sij rate-of-strain tensor

St Stanton number (¼Num=ðRemPrÞ)
t dimensionless time

DT mean temperature difference between wall

and fluid (¼ðTw � TbÞm), K

T temperature, K

Tlinear linearly increasing component of tempera-

ture, K

Tr friction temperature (¼ _q=ðqcpu�Þ), K

u; v;w dimensionless velocities in x; y; z-directions

u� mean friction velocity calculated from mean

pressure gradient in x-direction, m/s

u�mod mean friction velocity estimated by using

bulk mean velocity, m/s

�um dimensionless bulk mean velocity in x-
direction calculated at the entrance

¼ 1
4

R 1

�1

R 1

�1
�udy dz

� �
Um bulk mean velocity, m/s

x; y; z dimensionless Cartesian coordinates

aSGSj subgrid-scale energy flux

b expansion coefficient, 1/K

D1;D2;D3 grid spacing in n; g; f; directions expressed

in (x; y; z) coordinates’ scale

geff heat transfer efficiency index (¼ ðSt=
Stsmooth;stationaryÞ=ðf =fsmooth;stationaryÞ1=3

)

k thermal conductivity, W/(m K)

m kinematic viscosity, m2/s

mSGS dimensionless subgrid-scale eddy viscosity

x angular velocity, rad/s

q density, kg/m3

h dimensionless temperature (¼ðT � TlinearÞ=
Tr)

sSGSij subgrid-scale stress tensor

sw;s streamwise component of wall shear stress,

Pa

n; g; f curvilinear coordinates

Subscripts and superscripts

b bulk value

B Blasius

L local value

m duct average or based on bulk mean velocity

w wall

1 fully developed or ambient

� friction velocity or defined by using u�
+ dimensionless value based on inner scales

) grid resolvable component
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performed measurements in the rotating condition by

measuring the wall temperature distribution using ther-

mocouples for the smooth [10–12] and rib-roughened

[13–15] wall two-pass channels with the 180-deg sharp

turn. Liou et al. [16] performed the flow velocity mea-

surement of a rotating two-pass smooth channel with

the 180-deg sharp turn by using the laser Doppler ane-

mometer in addition to the detailed heat transfer mea-

surement by using the transient liquid crystal method.

However, it is very difficult to perform the experiments

in the rotating condition which can identify both the

flow structure and its influence on the heat transfer at

the same time. Thus, further progress in experimental

studies has so far been prevented.

In previous numerical studies of the serpentine flow

passage with the 180-deg sharp turn, the Reynolds-

averaged Navier–Stokes equation with a turbulence

model was adopted: Banhoff et al. [17] used the k–e two-

equation turbulence model or the Reynolds stress

equation model with the wall function, and Lin et al. [18]

used the low-Reynolds number two-equation turbulence

model without the wall function. Although this ap-

proach using the Reynolds-averaged turbulence model

could reproduce the heat transfer of blade cooling to

a certain extent, even the Reynolds stress equation

model has empirical constants and functions, and

therefore the applicability of the model should care-

fully be examined. Recent advancement in compu-

ters enables us to numerically simulate fluctuating

components of turbulent flow by using the large eddy

simulation (LES) or the direct numerical simulation

(DNS), and the techniques were applied to the smooth

straight duct in the stationary [19–21] and rotating

[22,23] conditions. Because LES and DNS directly re-

solve temporal variation of the fluctuating components,

the results are more universal, in other words, more free

from the empirical modeling than the Reynolds-aver-

aged turbulence models. Although LES also has

empirical constants and functions, the modeling of the

turbulence is confined to the subgrid-scale turbulence,

and therefore the effect of the empirical modeling on the

result is ideally less than that in the Reynolds stress

equation model. Recently, the authors performed the

numerical analyses by using a dynamic subgrid-scale

model for a rotating angled-rib-roughened straight duct

using a coordinate system fitted to the angled ribs

[24,25]. Very recently, the authors further proceeded to

numerically investigate the effect of the 180-deg sharp

turn on the fluid flow and heat transfer, and the heat

transfer variation was reproduced for the two-pass

smooth [26] and rib-roughened [27] channels with the

180-deg sharp turn in the stationary and rotating con-

ditions. Although the effect of the buoyancy force in the

centrifugal acceleration field is very important consid-

ering the highly severe thermal condition with high

rotation rate to which the real turbine blades are ex-
posed [25], the buoyancy effect was ignored in our pre-

vious studies of the two-pass channel with the 180-deg

sharp turn [26,27].

This study examines how the centrifugal buoyancy

force affects the heat transfer in the rotating two-pass

channel with 180-deg sharp turns. The computations

were performed varying the Rayleigh number that rep-

resents the intensity of the buoyancy force. The atten-

tion was paid to the relation between the main flow and

centrifugal buoyancy force directions, because the heat

transfer of radially outward and inward flow cases dif-

fers due to aiding and opposing buoyancy contributions

to the flow.
2. Numerical analysis

Fig. 1 shows the computational domain and coordi-

nate system used in this study. The duct had a square

cross-section with a side length of D. The coordinate

system was fixed to a rotating channel that had an

angular velocity of x with respect to the axis of rotation

parallel to the x-axis. The axial direction of the channel

straight pass was chosen in the z-direction; the x- and y-

directions were the parallel and perpendicular direction

to leading/trailing walls, respectively. The inner and

outer walls at the turn A was called the inner and outer

walls, respectively. Therefore, it should be noted that

‘‘the inner wall’’ and ‘‘the outer wall’’ of this study came

to the outer and inner sides at the turn B, respectively,

unless otherwise mentioned. The present procedure of

the numerical analysis was the same as our recent

studies [26,27]. After applying a filtering operation to the

incompressible Navier–Stokes equation with a filter

width equal to the grid spacing [21], the dimensionless

governing equations scaled by a length scale, ‘ (¼ 0:5D),

and mean friction velocity, u�, became a set of dimen-

sionless governing equations with respect to grid

resolvable components indicated by overbars as (�u, �v, �w)

under the assumption of constant fluid properties. In

order to simulate a fully developed situation, the pres-

sure and temperature fields were decomposed into

the steady and x-directionally linear component and the

remaining component [28]. By this decomposition, the

latter component of the pressure and temperature fields

can be treated using a periodic boundary condition in

the x-direction.

The temperature was made dimensionless by using a

linearly increasing component of temperature, Tlinear,

and a friction temperature, Tr, as h ¼ ðT � TlinearÞ=Tr.

Accordingly, the dimensionless energy equation was

derived for the grid resolvable component, �h. The gov-

erning equations in the Cartesian coordinates (x; y; z)
were transformed into generalized curvilinear coordi-

nates (n; g; f). At the middle of the first straight pass, the

n-, g-, and f-directions coincided with the x-, y-, and



Fig. 1. Schematic of a rotating two-pass smooth square channel with sharp 180-deg turns.
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z-directions, respectively. The governing equations in the

curvilinear coordinate system were expressed as follows

[29]:
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where U
j

was a contravariant component of velocity,

and the following expressions were assumed: J ¼
oðx; y; zÞ=oðn; g; fÞ; ðx1; x2; x3Þ ¼ ðx; y; zÞ, and (n1; n2; n3Þ ¼
ðn; g; fÞ. An external force term, Fi, in the momentum

equations (Eq. (2)) had the Coriolis force, the centrifugal

buoyancy force with the Boussinesq approximation, and

the mean pressure gradient term with a value of two as

shown in the following equation:
Fi ¼

2

2Ro��w� Gr�
Re2

�

ð�h � �h1Þy
Rm

�2Ro��v�
Gr�
Re2

�

ð�h � �h1Þ
Rm

ðH0 þ zÞ

0
BBBBBB@

1
CCCCCCA
: ð4Þ

Because the dimensionless mean rotation radius, Rm, is

much larger than y and z in the real gas turbines, the

following approximation can be used: y=Rm;0 and

ðH0 þ zÞ=Rm;1. In the dimensionless reference temper-

ature of h1 ¼ ðT1 � TlinearÞ=Tr, Tlinear changes linearly in

the x-direction, and therefore �h1 also changes linearly in

the x-direction. From the energy balance, the following

equation holds:

�h1 ¼ �Ch
x
�um

: ð5Þ

Consequently Eq. (4) was approximated as follows:

Fi ¼
2

2Ro��w

�2Ro��v�
Gr�
Re2

�
ð�h � �h1Þ

0
B@

1
CA: ð6Þ

In this study, the mean friction velocity, u�, was

calculated from the force balance between the mean

pressure gradient in the x-direction and the wall shear

stress as follows:
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qu2
� ¼

‘

2

dp
dx

����
����
m;dim

: ð7Þ

Here, the mean pressure gradient with the subscript,

‘‘dim’’, means the value with dimension, and it drives the

flow in the x-direction. By non-dimensionalizing Eq. (7),

the dimensionless mean pressure gradient value of 2

came out. Because the mean pressure gradient which

drove the flow in the x-direction was set to be constant in

this study, the flow rate varied depending on the flow

condition (the rotation number and the Rayleigh num-

ber); therefore, the flow rate was not known a priori, and

it was calculated from the resultant computed flow field

after the fully developed condition was attained. In this

study, the fully developed condition was judged by the

statistical steadiness.

Subgrid-scale components of stress, sSGSij, and energy

flux, aSGSj, were expressed as follows:

sSGSij ¼ 2mSGSSij; ð8Þ

aSGSj ¼
mSGS

PrSGS

onk

oxj

o�h

onk ; ð9Þ

where

Sij ¼
1

2

onk

oxj

o�ui

onk

 
þ onk

oxi

o�uj

onk

!
; ð10Þ

mSGS ¼ C2
SðD1D2D3Þ2=3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

q
: ð11Þ

Because the flow field of this study has no homoge-

neous direction, we adopted the Lagrangian dynamic

subgrid-scale model of Meneveau et al. [30] which

averages the value of CS along a path-line for a certain

distance. As for the coefficient of the Lagrangian aver-

aging time scale, the same value of 1.5 as that in [30] was

used. The turbulent Prandtl number for the subgrid-

scale component, PrSGS, was set to 0.5 [31]. These values

were mainly tested for the two-dimensional channel

turbulence, and therefore there is room for further

optimization of them to the present complicated flow

passage. However, it should be noted that the results in

[30] showed acceptably small sensitivity to the coefficient

of the Lagrangian averaging time scale, and the value of

PrSGS also showed small sensitivity to the flow types and

grid resolution in [31]. The width of the test filter was

double the grid spacing.

Discretization was performed by a finite difference

method using the collocated grid system [29]. The spa-

tial and temporal discretization schemes were similar

to those of Gavrilakis [20]: the second order central

differencing method and the Crank–Nicolson method

for the viscous term, and the second order differenc-

ing method satisfying the conservative property [29]

and the second order Adams–Bashforth method for the

convective term. The external force term was also trea-
ted by the second order Adams–Bashforth method.

The pressure field was treated following the MAC

method [32]. At the wall boundary, no-slip and constant

heat flux conditions were imposed. At the inlet and

outlet boundaries, the periodic boundary condition

[28] was imposed in order to obtain a fully developed

flow. The boundary conditions of the intermediate

velocities and pressure were set following the procedure

of [33,34].

The local Nusselt number, NuL, was calculated from

the wall temperature as follows:

NuL ¼ 2Re�Pr
�hw � �hb

: ð12Þ

The averaged Nusselt number was calculated by using

the integrally averaged temperature difference for the

area in question.

As explained above, the bulk mean Reynolds num-

ber, Rem, varied depending on the rotation number, Ro�,
and the Rayleigh number, Ra�. In order to exclude the

effects of Rem on the heat transfer, the value of

Re� ð¼ u�‘=mÞ was varied depending on Ro� ð¼ x‘=u�Þ
so as to keep the values of Rem constant. The adjustment

of Re� due to Ra� was not performed, because the effect

of Ra� on the flow rate was smaller than that of Ro�. The

resultant combinations of (Re�;Ro�) were (1000, 1) and

(1500, 2), and, for each Ro� case, the Rayleigh number,

Ra�, was varied among 0 to 2· 104. The conversion of

the dimensionless numbers of this study (Re�, Ro�, Ra�)
defined by the mean friction velocity, the friction tem-

perature, and the length scale of 0:5D into those of (Rem,

Rom, Grm;q) defined by the bulk mean velocity, the wall

heat flux, and the hydraulic diameter, D, was summa-

rized in Table 1. As you can see in Table 1, Rem values

were around 4000, and the computable Rem was limited

by the fact that the higher Reynolds number case re-

quires the higher grid resolution. As a try, the higher

Rem case of Rem;104 was also performed as ðRe�;Ro�Þ ¼
ð3500; 2Þ by using the highest grid resolution possible

with the present computational resource. For this case,

Ra� was extended up to 3· 104.

In correlating the experimental results, the effect of

the buoyancy is often expressed by using the Grashof

number, Grm;q, which is defined with the wall heat flux.

The following relation holds due to the definition of

Grm;q:

Grm;q ¼ 16Re�PrGr� ¼ 16Re�Ra�: ð13Þ

In the real aircraft gas turbine engines, the central region

of the operating range is in the order of Rem � 104,

Rom � 10�1, and Grm;DT=Re2
m � 10�1 [11]. From the

definition of Grashof numbers, the following relation

holds between Grm;q and Grm;DT :

Grm;q ¼ NumGrm;DT : ð14Þ
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Note that as compared to the real situation the values of

this study are smaller for Rem because of the limited grid

resolution. The buoyancy parameter [11], Grm;DT=Re2
m, of

this study is in the same order of the real situation (see

Table 1).

As shown in Fig. 1, the structured grid system was

generated by using Gridgen Ver.14 (Pointwise Inc.). The

grids in the physical domain were contracted to the walls

and the corners. For Re� ¼ 1000 and Ro� ¼ 1, the grid

number was 47· 47· 761 in n; g; f directions, and this

grid configuration gave a grid spacing of Dþ
1 ¼ 0:16–

18.9, Dþ
2 ¼ 0:16–13.8, and Dþ

3 ¼ 1:7–18.0 for Ra� ¼ 1	
104. Here, the inner length scale of m=u�mod was used,

because the friction velocity, u�, defined in Eq. (7)

overestimated the value. In Eq. (7), the streamwise

direction was assumed to be in the x-direction, and

therefore it cannot account for the longer total flow

distance caused by the change of the streamwise direc-

tion in the two-pass channel. In order to estimate

appropriate inner length and time scales, the friction

velocity, u�mod, was calculated by using the resultant flow

rate for each condition and the Blasius equation. For

Re� ¼ 1500 and Ro� ¼ 2, higher grid resolution of

47 · 47 · 1207 in the f-direction (grid number was dou-

bled only in the turn section) was adopted because slight

oscillation of the flow field was observed in the

47 · 47 · 761 grid results. The effect of the grid spacing

on the computed result was checked by increasing the

grid number to 71 · 71 · 761 for several cases, and no

major difference was observed as shown in Table 1. The

time step interval was Dt ¼ 1:0 	 10�4, which can be

expressed as Dtþ ¼ 0:016 (Re� ¼ 1000) when made

dimensionless by an inner time scale, m=u2
�mod. For

Re� ¼ 3500 and Ro� ¼ 2, the grid number of 71· 71·
1207 was used, and this gave Dþ

1 ¼ 0:30–23.4, Dþ
2 ¼

0:31–17.2, and Dþ
3 ¼ 3:2–24.6. The dimensionless time

step interval was Dtþ ¼ 0:031 ðRe� ¼ 3500Þ. Due to the

highest computational load, the grid independency test

could not be performed for the case of Re� ¼ 3500. Al-

though the values of Dþ
1 , Dþ

2 , Dþ
3 and Dtþ for Re� ¼ 3500

were comparable to those of Re� ¼ 1000 and 1500, the

results of Re� ¼ 3500 showed a little change depending

on the statistical samples, and it may be due to the

sample size shortage. It should be noted that the quali-

tative reproducibility of the results of Re� ¼ 3500 was

confirmed by comparing different statistical samples for

the same flow condition, and the conclusions of this

study were not changed.

In order to deal with the very high computational

load of this study, the computational domain was

decomposed into 64 sub-domains in the duct-axial (f)

direction, and the parallel computing technique was

applied. Each sub-domain’s computation was performed

on a different CPU on HITACHI SR8000 (Information

Technology Center, The University of Tokyo). When

the algebraic equation for each variable was solved by
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using the SOR method, the values at the sub-domain

boundaries were transferred to the neighboring sub-

domains by using MPI functions in each iteration step.

The computation was started using the result of the

similar condition as an initial condition. At first, the

calculations were carried out till the statistically steady
Fig. 2. Time-averaged profiles of Nusselt number and streamwise com

Rom ¼ 3:06, and Ra� ¼ 0).
flow condition was attained. After that, additional

90,000 steps (t ¼ 9 or tþ ¼ 1440 for Re� ¼ 1000) were

performed for computing the statistical values. This to-

tal time step was adopted as the sample size large en-

ough to give the steady statistical values after some

preliminary computations changing the sample size.
ponent of wall shear stress (Re� ¼ 1500, Rem ¼ 3926, Ro� ¼ 2,
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This 90,000 step computation needed about 10.1· 64

CPU hours. For the case of Re� ¼ 3500, the sample size

was reduced to 80,000 steps that needed about 26.8 · 64

CPU hours, and however as mentioned above this re-

duced sample size seemed not to be large enough to give

the same level of statistical steadiness as that of

Re� ¼ 1000 and 1500.
Fig. 3. Time-averaged profiles of Nusselt number and streamwise com

Rom ¼ 2:74, and Ra� ¼ 1 	 104).
3. Results and discussion

At first, the verification of the present numerical

procedure is explained. In our previous studies of

smooth [26] and rib-roughened [27] two-pass channels,

the numerical results were compared with the experi-

mental results of the stationary condition in the local
ponent of wall shear stress (Re� ¼ 1500, Rem ¼ 4386, Ro� ¼ 2,



Fig. 4. Locations of planes normal to duct-axis.
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and transversely averaged Nusselt numbers and also in

the channel averaged f and j factors. The agreement

between the numerical and experimental results was

good, and the present numerical procedure was able to

reproduce the heat transfer enhancement in and after the

sharp turn and the quick development of the saw-

toothed-profile heat transfer augmentation due to the

periodically installed ribs in the straight pass [26,27].

Figs. 2 and 3 show the local Nusselt number (a) and

the streamwise component of the wall shear stress (b) on

all four walls by viewing the flow channel from six dif-

ferent directions for Re� ¼ 1500 and Ro� ¼ 2. Fig. 2 is

the result without the buoyancy force (Ra� ¼ 0), and

Fig. 3 is that with the buoyancy force (Ra� ¼ 1 	 104). It

should be noted that the lower part of ‘‘outer wall’’ in

the figure shows the inner wall values because it is visible

through the inlet and outlet of the channel. The Nusselt

number of this study was normalized using the follow-

ing empirical correlation for a fully developed pipe flow

[35]:

Nu1 ¼ 0:022Re0:8
m Pr0:5: ð15Þ

In (b) zero shear stress areas are indicated by a white

line. In the calculation of the streamwise component of

the wall share stress, the streamwise direction was

approximated by the f-direction. In this study, the

trailing and leading walls of the first straight pass cor-

respond to the pressure and suction surfaces, respec-

tively, and opposite relation holds in the second straight

pass. The pressure and suction surfaces are defined with

respect to the Coriolis induced secondary flow, which

impinges onto the pressure surface. The following dif-

ferences are caused by introducing the buoyancy force.

The Nusselt numbers on the trailing wall in the turn A

(especially the upstream half) and the downstream part

of the first straight pass are increased, and the stream-

wise shear stress is also increased in the same area. The

reverse flow region in front of the turn A on the leading

wall is extended, and it covers almost all the leading wall

of the first straight pass; on the other hand, that in front

of the turn B on the trailing wall reduces its area.

Figs. 5 and 6 show the isocontours of the time-

averaged normal velocity component to the cross-sec-

tion, �u or �w, and temperature, �h, respectively, for Re� ¼
1500 and Ro� ¼ 2. (a) and (b) are for Ra� ¼ 0 and 1·
104, respectively. In the figures, the values at nine dif-

ferent duct-axial locations are shown (see Fig. 4): from

top to bottom x ¼ 4, z ¼ 16:9, 15, 13, 9, 5, 3, 1.1, and

x ¼ 8 (note that z ¼ 17, 9, and 1 correspond to the tip of

the inner wall of the turn A, the middle of the straight

pass, and the tip of the inner wall of the turn B, res-

pectively, and x and z are normalized by using ‘ ¼ 0:5D).

For this high rotation speed of Ro� ¼ 2, in the

downstream part of the straight pass, the profile of �w in

Fig. 5(a) becomes uniform in the x-direction. This phe-
nomenon is called the Taylor–Proudman effect [36] due

to the balance between the pressure gradient and the

Coriolis force which does not have a component in the

x-direction. Because of the Coriolis induced secondary

flow, the fluid temperature on the trailing (pressure) side

of the first straight pass becomes lower than that on the

leading (suction) side as seen by the low-temperature-

peak shift to the pressure side in Fig. 6(a); therefore, on

the pressure and suction surfaces of the first straight pass

(radially outward flow), the buoyancy works in the

aiding and opposing directions to the main flow,

respectively (see Fig. 7(a)). On the other hand, in the

second straight pass (radially inward flow), the situation

is reversed to the first straight pass: on the pressure and

suction surfaces of the second straight pass, the buoy-

ancy works in the opposing and aiding directions to the

main flow, respectively(see Fig. 7(b)). In this way, when

the buoyancy works, the radial flow direction becomes

an important parameter which controls the flow and

heat transfer.

When Fig. 5(a) and (b) are compared, the flow in and

after the turn are not much affected by the buoyancy. In

Fig. 5(b), the buoyancy effect is observed in the extended

reversed flow region that is clearly seen on the suction

side in the first straight pass (1 < x < 3) for z ¼ 5–15.

The flat profile at z ¼ 3 in the second straight pass

(5 < x < 7) is explained as follows: the reverse flow seen

near the suction surface z ¼ 3 in Fig. 5(a) disappears due

to the aiding contribution of the buoyancy, and, on the

other hand, the high streamwise velocity near the pres-

sure surface is decelerated by the opposing contribution

of the buoyancy. As shown in Fig. 6, the appearance and

disappearance of the reversed flow region drastically

change the temperature profiles (see for example z ¼ 13

for 1 < x < 3 and z ¼ 3 for 5 < x < 7).

Fig. 8 shows the turbulent kinetic energy, k, calcu-

lated from the grid resolvable components at the same

locations as Figs. 5 and 6. In Fig. 8, out-of-range high

values are shown by solid black area, and note that the

range is doubled for x ¼ 4, z ¼ 16:9, 1.1, and x ¼ 8 be-

cause of the high values in and around the turn. The

heat transfer enhancement caused by the buoyancy

introduction on the pressure surface in the first straight

pass (radially outward flow) is usually explained by the



Fig. 5. Buoyancy effect on time-averaged plane-normal velocity component in planes normal to duct-axis for Re� ¼ 1500 and Ro� ¼ 2

(from top to bottom, x ¼ 4, z ¼ 16:9, 15, 13, 9, 5, 3, 1.1, and x ¼ 8. Isocontour lines are drawn by every 0.2).
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turbulence production due to the increased shear stress

by the buoyancy [11]. As seen in Fig. 8, k is slightly in-

creased in the very vicinity of the trailing (pressure) wall

in the first straight pass for z ¼ 9–16:9. However, the

most discernible change due to the buoyancy introduc-

tion is seen in the increased k values in and around the
turn, which does not necessarily result in the heat

transfer enhancement: for example, in Fig. 8 at x ¼ 4

near the inner wall and z ¼ 1:1 near trailing (suction)

wall in the second straight pass (5 < x < 7), the k values

are increased very much by the buoyancy, which does

not correspond to the heat transfer enhancement that



Fig. 6. Buoyancy effect on time-averaged temperature in planes normal to duct-axis for Re� ¼ 1500 and Ro� ¼ 2 (from top to bottom,

x ¼ 4, z ¼ 16:9, 15, 13, 9, 5, 3, 1.1, and x ¼ 8. Isocontour lines are drawn by every 2).

A. Murata, S. Mochizuki / International Journal of Heat and Mass Transfer 47 (2004) 3215–3231 3225
much in Fig. 3 as compared to Fig. 2. The intensified

shear stress due to the buoyancy introduction results in

the larger production of k, and k is increased. However,

the heat transfer is strongly affected by the temperature
field, and therefore the increased turbulence does not

necessarily cause the heat transfer enhancement.

In order to view the flow structure of the whole two-

pass channel, the isosurface (surface with the same



Fig. 7. Explanation of aiding and opposing buoyancy contri-

butions in first (radially outward flow) and second (radially

inward flow) straight passes.
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value) of the second invariant, Q, of the deformation

tensor, oui=oxj, [37] is shown in Fig. 9. The value of Q is

calculated by Eq. (16) for incompressible fluids, and it is

often used to identify vortices because the positive value

of Q means that the vorticity exceeds the strain.

Q ¼ 1

2

oui

oxi

� �2
"

� oui

oxj

� �
ouj

oxi

� �#

¼ � 1

2

oui

oxj

� �
ouj

oxi

� �

¼ 1

2

1

2

oui

oxj

��(
� ouj

oxi

��2

� 1

2

oui

oxj

��
þ ouj

oxi

��2
)
:

ð16Þ

As seen in Fig. 9, in and around the turn the strong

vortices are produced. The effect of the buoyancy is seen

in the different vortex structure near the pressure sur-

faces in the first and second straight passes: in the first

straight pass, the longitudinal vortex structure is main-

tained by the aiding contribution of the buoyancy, and

in the second straight pass the longitudinal vortex

structure is weakened and becomes discrete in the

streamwise direction due to the opposing contribution of

the buoyancy. In front of the turn A, the longitudinal

vortex structure near the pressure surface of the first
straight pass is somehow very persistent in space, and it

is also observed as streaks in the time-averaged fields of

Fig. 3.

Fig. 10 shows the duct-axial variation of the area-

averaged Nusselt number, Nuarea. In order to show the

approximate tendency, the area average was taken with

the pitch of D (straight pass) or 0:5D (turn) in the duct-

axial direction for each wall in addition to the transverse

average. The thin, middle, and thick line widths corre-

spond to Ra� ¼ 0, 5 · 103, and 1 · 104, respectively. As

seen in Fig. 10(a), the outer wall gives the two peaks in

the turn, and the buoyancy makes the two peaks lower

in the turn B (‘‘inner’’ in the figure), although it does not

affect the values in the turn A. As experimentally ob-

served [11], in Fig. 10(b) the buoyancy enhances the heat

transfer on the trailing (pressure) wall in the first straight

pass (radially outward flow) strongly; on the other hand,

the buoyancy effect is small in the second straight pass

(radially inward flow).

In order to examine the buoyancy effect in the

developed region, the area-averaged Nusselt number at

the downstream part of the straight pass is shown in Fig.

11. The averaging area of 2–3D upstream of the turn was

chosen so that the downstream turn effect can be ex-

cluded. In Fig. 11, the buoyancy parameter, Grm;q=Re2
m,

is used as the horizontal axis. On the pressure surface,

the buoyancy effect on Nuarea is large, and Nuarea of the

aiding contribution cases (solid lines) are larger than

those of the opposing contribution cases (broken lines).

However, the detailed tendency differs depending on Re�
and Ro� and the straightforward description on the

buoyancy effect on Nuarea in the developed region cannot

be made. The values on the suction surface show much

smaller variation, and a slight increase is observed due

to the buoyancy.

Fig. 12 shows the friction factor, f , normalized by

using fB in the following Blasius equation:

fB ¼ 0:079Re�0:25
m : ð17Þ

The precise values of f =fB are shown in Table 1. In

order to decompose the total pressure loss into the

sharp-turn and straight-pass contributions, the follow-

ing pressure loss coefficients, Kturn and Kstraight, are also

plotted in Fig. 12 [38]:

Kturn ¼ Dpturn

1
2
qU 2

m

and Kstraight ¼
Dpstraight

1
2
qU 2

m

: ð18Þ

Here, Dpturn is the pressure loss associated with the sharp

turn, and it is calculated by linearly extrapolating the

area-averaged wall-pressure profile at the central region

of the first and second straight passes in the direction

toward the turn inlet and outlet locations at z ¼ 17 for

the turn A and at z ¼ 1 for the turn B [38]. The straight

pass component, Dpstraight, was calculated from the linear

pressure profile at the central region of the straight pass.



Fig. 8. Buoyancy effect on turbulent kinetic energy in planes normal to duct-axis for Re� ¼ 1500 and Ro� ¼ 2 (From top to bottom,

x ¼ 4, z ¼ 16:9, 15, 13, 9, 5, 3, 1.1, and x ¼ 8).

A. Murata, S. Mochizuki / International Journal of Heat and Mass Transfer 47 (2004) 3215–3231 3227
A small decrease of the f factor by the buoyancy force is

observed in Fig. 12. This is contrary to the fact that the

f factor gave a rapid increase by the introduction of the

channel rotation (the rotation number effect) [26].

Without the buoyancy, Kturn is larger than Kstraight. The

buoyancy makes Kturn decrease both in the turns A and

B with an exception for the turn B of Re� ¼ 3500, in
which Kturn shows a slight increase. The value of Kstraight

in the second straight pass becomes negative, due to the

positive pressure gradient in the streamwise direction

which is caused by the coincidence of the main flow and

buoyancy force directions: the main flow is driven by the

buoyancy in the second straight pass (radially inward

flow). The buoyancy increases and decreases Kstraight in



Fig. 9. Instantaneous vortex structure visualized as isosurface of Q ¼ 10 (Re� ¼ 1500, Ro� ¼ 2, and Ra� ¼ 1 	 104).

3228 A. Murata, S. Mochizuki / International Journal of Heat and Mass Transfer 47 (2004) 3215–3231
the first and second straight passes, respectively, and this

opposing variation in Kstraight cancels to each other. As a

total, the pressure loss behavior of the channel is con-

trolled by Kturn, and the f factor decreases as Grm;q=Re2
m

increases. As can be understood by the large variation of

Kturn at Grm;q=Re2
m ¼ 0 for different Ro�;Kturn is very

sensitive to the rotation number, Ro�. On the contrary,

Kstraight is insensitive to Ro� at Grm;q=Re2
m ¼ 0.

Fig. 13 shows the Colburn’s j factor normalized by

using j1 calculated from Nu1 in Eq. (15). The precise

values of j=j1 are shown in Table 1. In order to further

examine the heat transfer efficiency taking the pressure

loss into account, the heat transfer efficiency index, geff ,

was calculated by using the following equation [39]:

geff ¼
St=Stsmooth;stationary

ðf =fsmooth;stationaryÞ1=3
: ð19Þ

As explained in [39], geff is the index of the heat con-

ductance for equal pumping power and heat transfer

surface area. As shown in Fig. 13, the j factor is insen-

sitive to the buoyancy and stays almost constant. As a

result, geff slightly increases with the increase of the

buoyancy due to the decreased f factor seen in Fig. 12.
4. Conclusions

In order to investigate the centrifugal buoyancy effect

on the heat transfer, the large eddy simulation of the
two-pass square rotating channel with the 180-deg sharp

turns was performed by varying the Rayleigh number.

From the numerical results, the following conclusions

were drawn.

Due to the aiding and opposing buoyancy contribu-

tions to the main flow, the velocity and temperature

fields became different depending on the radial flow

directions. The variation caused by the buoyancy was

larger for the heat transfer on the pressure surface than

that on the suction surface. When the instantaneous

vortex structure was viewed, the longitudinal vortex

structure was maintained near the pressure surface of

the radially outward flow where the aiding buoyancy

contribution worked, but that was weakened and be-

came discrete near the pressure surface of the radially

inward flow where the opposing buoyancy contribution

worked.

The pressure loss coefficient of the sharp turn was

decreased by the buoyancy, and that of the straight pass

was increased and decreased in the first (radially out-

ward flow) and second (radially inward flow) straight

passes, respectively. Because the pressure losses of the

two straight passes canceled to each other, the friction

factor of the channel was controlled by the pressure loss

of the sharp turn, and it decreased a little as the buoy-

ancy increased. In the present buoyancy range, the Co-

burn’s j factor stayed almost constant, and the heat

transfer efficiency index was slightly increased by the

buoyancy due to the decreased friction factor.
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